1. 首页
  2. 大牛说
  3. 寒武纪行歌王平出席泰达汽车论坛:云边端车协同赋能新生态

寒武纪行歌王平出席泰达汽车论坛:云边端车协同赋能新生态

程雯

2022年9月2-4日,第十八届中国汽车产业发展(泰达)国际论坛(以下简称“泰达汽车论坛”)成功召开。本届大会邀请来自国内外的1000余位权威智库专家、汽车及零部件企业高层精英汇聚津门,通过线上线下相结合的方式,重点探讨产业政策取向,坚定产业发展信心,持续推动汽车产业高质量发展。会议围绕“强信念、稳发展、开新局”的主题,论坛通过全体会议及10余场专题论坛等研讨汽车行业发展战略动向、市场需求变化、前瞻技术发展方向等领域的热点议题。寒武纪行歌执行总裁王平应邀出席生态论坛并发表了《单车智能突破,云边端车协同》的主题演讲。

汽车是长产业链、大协同、大制造的“集成化”产业,技术和资金密集、产业关联度高、规模效应突出、消费拉动大,代表了制造业的先进水平,在国民经济中占据重要地位。

目前,我国已形成“原材料—零部件—总成—整车制造—基础设施及服务”的新能源汽车全生态产业链。智能网联汽车将会形成“三纵四横十模块”的产业生态。三纵是指三个产业链条,即以出行工具为龙头的自动驾驶汽车产业链条、以智能化道路为载体的道路产业配套链条、以服务平台为主导的车联网服务链条。四横是指生态圈、细分领域、一级零部件及服务配套、底层零部件及服务支撑四个层次。而十模块是十个子模块,具有强大的全生态资源整合能力的企业会成为生态圈的主导者。

正如寒武纪行歌执行总裁王平在泰达汽车论坛之生态论坛上所说:随着电动化、智能化、网联化、共享化的技术发展,汽车不再是单一的交通工具,而是成为下一代移动智能终端,甚至成为智能机器人。智能汽车将成为人与空间的共同延伸,带动一个全新的智能汽车产业新生态。

用AI芯片支撑自动驾驶更快升级

谈及未来5年的自动驾驶的趋势时,王平分析称:“我们看到四大趋势,首先是L2+的自动驾驶系统的装备率将会迅速普及并将长期存在,未来五年L2+及以上的总体渗透率可能超过50%,受限场景L4自动驾驶开始落地,L2+~L4并行存在。第二个趋势是,自动驾驶的算法更为复杂,处理的数据量指数级上升,算力需求不断攀升。第三个趋势是,车路云端的闭环协同,将会进一步推动驾乘体验持续升级。第四个趋势是,为满足消费者个性化的需求,增强厂商差异化竞争力,车端训练将会得到发展。”

同时,王平认为:智能驾驶系统规模化落地、车路云协同的方案均面临着多重挑战。

“首先,单车智能面临以下挑战:第一,目前单片SOC的处理能力普遍不足,因此需要2片甚至更多片来实现,使得系统复杂度指数级上升,量产困难;第二,多片SOC还造成域控制器功耗很大,必须采用风冷甚至液冷,增加了系统成本,从而使得智能驾驶系统在燃油车及10万元以下车型都很难普及;”王平进一步指出,“而车路云协同的方案,海量数据的闭环需要大规模AI集群的支撑,根据特斯拉的数据,每一辆智能车上路,就需要增加价值500美金的云端AI计算资源来支撑,成本压力巨大,目前云端统一运营数据的模式还不能有效满足车主个性化的需求。”

因此,寒武纪于2021年成立寒武纪行歌,致力于成为安全可靠的智能车载芯片引领者,用AI芯片支撑自动驾驶更快升级。作为寒武纪设立的控股子公司,寒武纪行歌专注于智能驾驶芯片的研发和产品化工作,核心研发团队来自行业领先的芯片公司和领先的科研机构,并进行了独立融资,引入了蔚来、上汽及宁德时代旗下基金等战略投资人。此外,寒武纪还与中国一汽签署了战略合作协议,双方共同推进大算力芯片研发和量产落地。

对于产品的研发进程和规划,王平提到:“今年内,我们将发布面向L2+芯片及计算平台,以及自动驾驶软件平台及开发工具箱;明年我们将发布国内首颗7nm、面向 L4自动驾驶的芯片及计算平台。”

面向L2+的SD5223芯片推动自动驾驶覆盖10-15万元入门级车型

在谈到2022年内将发布的面向L2+市场的SD5223芯片的时候,王平表示,针对L2+级别市场,当前的域控制器方案一般采用两颗甚至三颗SOC来实现L2+级别的行车+泊车功能,系统复杂,功耗高,无法采用自然散热,成本也相应水涨船高,较难在10万元以下车型应用。

而寒武纪行歌将在年内发布L2+行泊一体芯片解决方案,采用先进工艺,最大算力16TOPS,更高DDR带宽、车规级图像处理单元;目前,行歌已经和领先的Tier1公司、算法公司开展合作研发,SD5223将支持8M IFC、5V5R、10V10R三种产品形态;其中5V5R 方案单颗SOC实现行泊一体功能,并可采用自然散热,推动自动驾驶系统向10-15万元的入门级车型覆盖。

面向L4的SD5226系列产品算力大幅提升至超过400TOPS

预计2023年发布的面向L4市场、可支持车端训练的SD5226高端智驾芯片系列产品,则会将汽车带入高智能汽车2.0时代。王平指出,当前面向L4级别的自动驾驶域控制器都采用2颗甚至4颗SOC的解决方案, 带来了系统复杂、板级带宽受限、功耗超标、量产周期长等风险和挑战。

去年寒武纪曾宣布正在研发一颗7nm工艺、算力超过200TOPS的芯片,即为SD5226高端智驾芯片系列产品。而在本次研讨会上,王平强调:“因应市场的需求,我们将SD5226的人工智能算力进一步提高到超过400TOPS,CPU最大算力超300KDMIPS,依旧采用7nm工艺,独立安全岛设计,率先提供基于单颗SOC的L4级别的自动驾驶解决方案。此外,这颗芯片还可以支撑车端自学习架构的落地量产。”

当前已有的车端芯片以推理架构为主,算法模型的更新和训练需要在云端完成。而寒武纪行歌则采用了端云一体,训推一体的AI处理器架构,可以支持车端训练,使得智能汽车真正具有自我进化自我成长的能力,从而迈入高智能汽车2.0时代,使汽车成为人类的真正伙伴。

从车企和车主来说,车端自学习能力优势包括:第一,能够真正满足用户个性化需求,实现“千车千面”,比如不同的驾驶习惯,不同的车人交互等等;第二,能够按客户意愿选择是否将单车数据上传云端;第三,能够使数据实现闭环分布,有效降低了云端AI集群的造价,车企可以更有效的开展服务运营。

支持车云协同、深度定制与高效开发

由此可见,为了满足智能汽车市场不同的算力需求,寒武纪行歌致力于推出全面覆盖不同级别的智能驾驶芯片产品,全系列芯片组合,覆盖10T~1000T不同算力需求,为不同客户提供强大而灵活的算力选择。

另外,十分具有优势的是,寒武纪行歌拥有车云统一的处理器架构、指令集和平台级基础软件,支持高效地进行数据闭环和AI调优,将精度损失降到最低;在云端提供训练板卡和集群,处理车端手机的海量数据,通过训练生成先进的自动驾驶模型,经过OTA推送到车端。在车端提供大算力接口丰富的自动驾驶推理芯片。支持复杂模型大算力需求,支持算法模型的持续迭代。通过数据存储产品以及数据传输链路,将车端推理场景的CornerCase数据回传到云端,在云端进行AI模型重新训练,并将新模型更新至车端。

不仅如此,寒武纪行歌还能针对车端场景深度定制MLU等关键IP,同等功耗下最大限度提升驾乘体验。特别是寒武纪还将与Tier 1 公司、传感器公司、算法公司等一起与OEM密切协同,形成网状的合作关系。王平讲到:“我们将主动“攒局”,联合合作伙伴构建成熟的算法及软件解决方案,提供多层级可裁剪的货架化解决方案交付,全面满足车企对质量、进度,客户体验差异化等多重需求,提升终端用户的驾乘体验。”

值得注意的是,王平透露:寒武纪行歌还为用户准备了灵活易用的开发工具箱、友好可继承的软件接口,支持开发差异化的需求,提高开发效率。

在演讲的最后,王平还呼吁,为了智能驾驶芯片的健康发展,希望得到车企和半导体行业的大力支持。从车企的角度,我们希望车企可以给国内的芯片公司更多的机会,通过联合开发项目,牵引SOC成为更符合车企需求的SOC,更多使用智能驾驶芯片提升供应链多样性。同时,支持引导生态打造,鼓励芯片企业、算法公司、Tier 1等企业的强强合作。

来源:第一电动网

作者:程雯

本文地址:https://www.d1ev.com/kol/184163

返回第一电动网首页 >

收藏
30
  • 分享到:
发表评论
新闻推荐
热文榜
第一电动网官方微信

反馈和建议 在线回复

您的询价信息
已经成功提交我们稍后会联系您进行报价!

第一电动网
Hello world!
-->